The pulse duration has increased to 1 ns. This broadening can be attributed to the laser amplifier and drive conditions.

The DFB was then intensity modulated by the digital video multiplexer shown in Fig. 5. The corresponding gated output from the 2.2 GHz receiver, produced as a single channel 'eye' pattern at the centre of the photograph, plus unwanted channels at either side, is shown in Fig. 6. The bias currents of both the laser and the amplifier, the monochromator wavelength and the polarisation state were adjusted to give the optimum ratio of gated signal to unwanted channels.

Fig. 5 Input multiplexes

Acknowledgements: We thank the Director of Research, British Telecommunications for permission to publish this letter.

D. W. FAULKNER
D. M. RUSSELL
J. C. REGNAULT
A. LORD
British Telecom Research Laboratories, Martlesham Heath, Ipswich IP5 3RE, United Kingdom

References

CONTINUOUSLY TUNABLE 1.5 µm MULTIPLE-QUANTUM-WELL GainAs/GainAsP DISTRIBUTED-BRAGG-REFLECTOR LASERS

We demonstrate improved performance in tunable distributed-Bragg-reflector lasers using GainAs/GainAsP multiple-quantum-well active layers. We observe linewidths as low as 1.9 MHz, differential quantum efficiencies as large as 33%, front facet at 1.5 µm, and rapid electronic access to all frequencies throughout a 1000 GHz range.

Tunable narrow-linewidth semiconductor lasers can be expected to play a major role in future lightwave systems, both in high-capacity point-to-point links as well as in networking and switching applications. In this letter we describe improved performance in tunable lasers using GainAs/GainAsP multiple-quantum-well (MQW) active layers and thin etch-stop layers for reproducible fabrication techniques.

Fig. 7 shows the basic three-section, three-electrode, distributed Bragg reflector (DBR) laser design, where we have employed MQW active layers. The detailed sequence in the gain section is an n+ InP substrate with an n+ InP buffer, ~250 Â n-type 1.3 µm pnp (photoluminescence wavelength) Q (quaternary GainAsP) serving as the majority of the waveguide core, a 250 Â n-type InP etch-stop layer, four sequences of 100 Â 1.3µm Q barriers and 80 Â GainAs quantum wells, ~300 Â p+ 1.3 µm Q, and an upper 1.5 µm-thick p+ InP cladding with a ~0.5 µm p+ GainAs cap. The lateral structure is the previously described semi-insulating planar buried heterostructure geometry, and all epitaxy is done with atmospheric-pressure MOVCD. No optical coatings were applied to any of the devices studied here.
Fig. 3 shows typical TE and TM optical spectra of at 0-9\degree for devices with gain, phase and Bragg section lengths of 400\,μm, 60\,μm and 150\,μm, respectively, and 20\,μm isolation grooves between the sections. Well outside the Bragg band the finely spaced Fabry–Perot modes of the entire cavity evident in the TE emission have negligible ripple, indicating that the structure achieves the high level of optical continuity essential for reproducible, well-behaved tuning characteristics. Side mode suppression above threshold can be as high as 45\,dB, and easily exceeds 30\,dB unless the Bragg or phase current is adjusted to be very near a mode transition. The TM emission is highly suppressed with its peak shifted to higher energy. This results from the reduced matrix element between the conduction band and the heavy-hole valence band near k_x = 0. For direct modulation, this will drastically reduce any potential TM mode-partition problems.

The excellent optical continuity along the guide is also confirmed by the light/current (l/I) characteristics. Fig. 3 shows the CW 23°C l/I curve for the device shown in Fig. 2, with the phase section open-circuited and the Bragg section shorted through a 50Ω resistance. The differential quantum efficiency η_d at low power is 33\% front facet, indicating very low cavity loss. Output power exceeds 20\,mW with no mode hop in this device; the inset shows the stable 36° FWHM far field. The maximum power and η_d probably can be improved further with optimized output facet coatings.

Fig. 3 shows stable far field

Linewidths which saturated at a minimum value of ~3-4\,MHz were achievable in most devices measured. Fig. 4 shows the best device, with a minimum linewidth of 1.9\,MHz as seen in the delayed self-heterodyne beat spectrum shown in the inset. The linewidth is plotted against power and inverse power, and the linewidth-power product of 7\,MHz\,mW is very low for a single-cavity semiconductor laser.

Fig. 5 shows a typical tuning characteristic for these devices. The lower set of curves shows the phase-section current required to achieve the operating wavelength read along the abscissa for each of the 13 selectable longitudinal modes of the structure. Across the entire range the Bragg currents run from ~1\,mA to ~90\,mA. Each curve has a different initial Bragg current for mode selection, but in addition the Bragg current is varied with the phase current a small amount along each curve to maximize the total sweep range of each mode. For the short (60\,μm) phase section device shown here, the total tuning range exceeds 1000\,GHz (~80\,Å) and the sweep range is ~150\,GHz (~14\,Å). This exceeds the ~6\,Å free spectral range by more than a factor of two, thus easily providing a guarantee of continuous electronic accessibility of any wave-length throughout the 1000\,GHz range. This continuous sweeping range can usually be accomplished with only one current variation and a linear resistive current divider. Longer (~234\,μm) phase section devices had similar characteristics with a slight reduction in η_d, but offered a larger local sweep of 250\,GHz (~21\,Å).

The upper part of Fig. 5 shows the linewidth behaviour as the device is tuned. Provided one only scans an amount sufficient to achieve complete electronic coverage (one free spectral range), linewidths can always be maintained below ~16\,MHz across the entire 1000\,GHz tuning range. Reduced linewidth results from both the high-Q cavity and the reduced linewidth

Fig. 3 CW l/I curve at 23°C of three-section MOP-BRR

Inset shows stable far field

Fig. 4 CW linewidth against power (x) and inverse power (o) as measured by delayed self-heterodyne technique.

Inset shows beat spectrum, revealing 1-9\,MHz laser linewidth

Fig. 5 Tuning characteristics of three-section MOP-BRR

Bottom shows phase current required to achieve a specified wavelength for each of 13 different Bragg-selectable modes. Bragg current is also varied slightly along each trace to maximize sweep range of each mode. Upper curve shows CW linewidth for each mode as tuning occurs. Entire 1000\,GHz range can be spanned while keeping linewidth below ~16\,MHz.

1432
enhancement factor $g$ in the quantum-well gain medium. The latter was determined to have a value of $-4.5$ by monitoring simultaneously the FM sideband spectrum and the IM waveform under high speed direct modulation.

These devices are suitable for both high-quality tunable local oscillators or medium-bit-rate FSK transmitters. Flat FM response can be obtained up to the $\sim 100$ MHz limit imposed by the free-carrier lifetime, with the large response ($\sim 10-15$ GHz/mA) evident in Fig. 5 overpowering any thermal effects at low frequencies. Direct modulation is also possible, but any speed benefits resulting from increased quantum-well differential gain are overshadowed by the longer photon lifetime and reduced photon density due to the placement of the quantum wells with respect to the waveguide core. Linear variation of the relaxation oscillation frequency $f_{ro}$ against $P^{\text{opt}}$ was observed, but even at powers of 15 mW, $f_{ro}$ had only achieved $\sim 6$ GHz. The devices do exhibit low chirp (1-8 A 20 dB down) under 5 Gbit/s direct modulation with a 3:1 extinction ratio; at higher extinctions the high-Q enhanced relaxation oscillations induce pattern effects and eye closure. A high extinction would probably be possible with a front facet coating.

In closing, we have demonstrated improved performance in continuously tunable semiconductor lasers using quantum-well active layers and ultrathin etch-stop fabrication techniques. These lasers offer reproducible spectral properties, and look promising for practical coherent technology.

T. L. KOCH
U. KOREN
R. P. GNALL
C. A. HURRUS
B. I. MILLER
AT&T Bell Laboratories
Crawford Hill Laboratory
Holmdel, NJ 07733, USA

9th September 1988

References


THE SSFIP: A GLOBAL CONCEPT FOR HIGH-PERFORMANCE BROADBAND PLANAR ANTENNAS

Indexing terms: Antennas, Planar antennas, Microstrip

The SSFIP (strip-slot-foam-inverted patch) antenna presents significant advantages over standard microstrip antennas: very broad bandwidth, high efficiency, low cross-polarisation level, integrated radomes, lightweight and rigid construction and low cost. A 4-element array with more than 16 dB gain and 21% bandwidth for SWR $\leq 2$ shows what can be achieved.

Introduction: Microstrip patch antennas present significant advantages in terms of size, ease of fabrication and compatibility with printed circuits, but also a number of drawbacks.

Electronics Letters, 10th November 1989, Vol. 25, No. 23, 1433